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ABSTRACT: Engineering halide perovskites through external
pressure is as an effective means to tune the crystal structure, thus
optoelectronic properties of the material. In this work, we studied
the structural and optical property evolutions of Cs4MIIBi2Cl12
(MII: Cd, Cd0.8Mn0.2, Mn) layered double perovskite (LDP)
crystalline powders under high pressure. A novel polytypic phase
transition was observed featuring lateral interlayer sliding of the
Bi−MII−Bi trilayer units, resulting in a new LDP-12R phase.
Importantly, this high-pressure induced LDP-12R crystal phase can
be preserved after complete decompression and captured at
ambient conditions. Moreover, the LDP samples showed a
pressure-dependent photoluminescence property. Our findings
exemplified a new perovskite polytype that can be accessed and captured through high-pressure processing, advocating the
uniqueness of LDP materials with soft and transformable crystal lattices.

■ INTRODUCTION
Owing to the unique crystal structure and chemical
composition, halide perovskites as a family of optoelectronic
materials have gained unprecedented amount of research
attention in the past decade.1−7 Due to the structural
complexity and tightly linked crystal structure−property
relationship of perovskites and perovskite-derivative materials,
controlling the crystal phase of such materials became an
essential research topic for further advancing halide perovskites
toward real-world technological applications.8−10 With the goal
of expanding optoelectronic properties as well as searching for
low-toxicity alternatives to lead-based perovskites, lead-free
perovskites have emerged as an increasingly important class of
materials in recent years.11−14 Metal cations in lead-free
perovskites are often different in size and valence states than
lead cations, thus resulting in crystal structures deviating from
the conventional cubic perovskite lattice.15−17 Therefore, the
ever-expanding structure library of lead-free perovskites and
perovskite derivatives are generally catalogued by the
connectivity and symmetry of the MX6 octahedral subunits
in the crystalline lattices.18,19 Such local structure versatility
imparts soft and transformable features to the crystal, thus
rendering high-pressure processing an effective means to
modulate not only the crystal structure but also the structure-
related optical/electronic behaviors of such materials.20,21 For
example, prior studies have proven that halide perovskites can

undergo a phase transition under pressure from the high-
symmetry phases (e.g., cubic Fm3m phase for Cs2AgBiCl6 and
Cs2AgBiBr6) to the lower symmetry structures (e.g., I4/m for
Cs2AgBiCl6 at >5.6 GPa and Cs2AgBiBr6 at >4.5 GPa) driven
by the deformation and tilting of the metal halide
octahedra.22−24 However, upon releasing the pressure, the
crystal structure will typically revert to the original structures at
ambient condition, thus greatly limiting the application value
of the high-pressure technique. Some perovskite materials (e.g.,
Cs2NaBiCl6, etc.) are able to retain the properties observed at
high pressure such as narrowed band gaps and pressure-
induced emission after complete decompression.22,25,26 How-
ever, those properties are typically retained through incomplete
recrystallization from the amorphous high-pressure phase,
while retainable high-pressure phases during simple compres-
sion−decompression processes have been less reported.27,28

Two-dimensional (2D) lead-free layered double perovskites
(LDPs) have received extensive investigation as a potential
optoelectronic material in photovoltaic, photodetector, and
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transparent conductor.29−34 LDPs exhibit a general chemical
formula of A4MIIMIII

2X12 (A = Cs; X = Cl and Br) that can be
summarized as a product of replacing [PbX6]4− octahedra in
the conventional APbX3 3D lead-halide perovskites with
[MIIX6]4−, [MIIIX6]3− octahedral units, and vacancies. As a
result, within each (001) lattice plane of the LDP structure, the
same types of metal halide octahedra (either [MIIX6]4− or
[MIIIX6]3− octahedra) are laterally assembled (Scheme 1a).
Meanwhile, the LDP lattice exhibits a repeating pattern of
MIII−MII−MIII trilayer units that are sandwiched by two
vacancy layers (Scheme 1a).35 The relatively weak inter-trilayer
interaction makes LDPs prone to sliding along lateral
directions, thus forming polytypic crystal motifs where the
stacking sequence along the vertical direction alters while
preserving other structural characteristics.36 While such
polytypic lattice motifs have been previously observed as
low-population crystalline defects in lead-based perov-
skites,37−39 to date, capture of the LDP materials with a pure
polytypic crystalline phase has not been achieved to date.
Herein, we report a pressure-induced retainable phase

transition of Cs4MIIBi2Cl12 (MII: Cd, Cd0.8Mn0.2, or Mn)
LDP powders. Upon applying pressure, the LDPs undergo a
phase transition from the pristine phase to a new polytypic
phase through lateral sliding of Bi−MII−Bi trilayer units along
the [110] crystal direction (Scheme 1). Importantly, the
resulting LDP high-pressure phase can be fully captured after
complete decompression, demonstrating the retainability of
this polytypic phase transition and the ambient stability of the
resulting polytypic LDP materials. Moreover, we conducted in
situ monitoring for the emission property evolution of the
LDPs under pressure and discovered a pressure-induced
localized defect-state emission. Our study not only presents
the first example of harvesting a new LDP material with unique
high-pressure polytypic phases but also sheds light on the
crystal phase engineering of lead-free perovskites through clean
and effective pressure engineering postsynthesis.

■ METHODS
Chemicals. Cesium chloride (CsCl, 99.9%), manganese

chloride (MnCl2, >99%) and cadmium chloride (CdCl2,
99.99%) were obtained from Aldrich. Bismuth oxide (Bi2O3,
99.9%) was obtained from Acros Organics. Hydrochloric acid
(37%, ACS plus), hexane, and ethanol were obtained from
Fisher.

Synthesis of LDP Powders. The synthesis of
Cs4MIIBi2Cl12 LDP (MII: Cd or Mn) powder was adopted
from the synthesis of Cs4MnSb2Cl12 with modifications.35

Bi2O3 (93.2 mg, 0.20 mmol), metal chloride (CdCl2 (36.7 mg,
0.20 mmol), or MnCl2 (25.2 mg, 0.20 mmol)) were dissolved
in HCl (1 mL) separately. After complete dissolution, the Bi-
containing solution was mixed with the metal chloride
solution. CsCl (134.7 mg, 0.80 mmol) was dissolved in HCl
(0.5 mL) and then added to the mixed precursors under
stirring. White precipitates were formed upon the addition of
CsCl. The formed Cs4MIIBi2Cl12 powder was centrifuged at
3000 rpm for 5 min and washed with 2% HCl and then
ethanol, followed by washing with hexane for another two
times. The product was centrifuged after washing each time.
The obtained wet powder was dried at 70 °C for 1 h and then
stored at ambient condition. For the synthesis of
Cs4(Cd0.8Mn0.2)Bi2Cl12, a stoichiometric amount of a CdCl2
and MnCl2 ([Cd]:[Mn] = 8:2) mixture was added to the Bi
solution and the rest of the synthesis follows the same
procedure as for the Cs4MIIBi2Cl12 LDP (MII: Cd or Mn)
powder.
High-Pressure Experiments, Synchrotron-Based X-

ray Scattering and PL Measurements. In situ wide-angle
X-ray scattering (WAXS) measurements were performed at
beamline 11-BM of National Synchrotron Light Source II
(NSLS II) at Brookhaven National Laboratory (BNL). A
diamond anvil cell (DAC) technique was used for all high-
pressure experiments. A stainless gasket was preindented from
250 to ∼70 μm, and a ∼200 μm hole was drilled serving as the
sample chamber for the powder LDP samples. Several ruby
microcrystals were placed on top of the powder samples. The
ruby photoluminescence (PL) (measured by Ocean Insight
HR 2000+ spectrometer) excited by 532 nm laser (Spectra-
physics) was used to monitor the pressure in situ. In situ PL
was monitored by an Ocean Insight spectrometer USB2000+
with a 405 nm laser excitation. Raman spectra were measured
in situ with a Witec Alpha 300 confocal Raman microscope
using 532 nm laser excitation. The bulk modulus (K0) was
calculated with the second-order Birch−Murnaghan equation
of states.
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Scheme 1. (a) Schematic Illustration of the Relationship between the LDP-3C Phase and the LDP-12R Phase through Trilayer
Lateral Sliding and (b) Unit Cell (UC) of the LDP-12R Phase with the Space Group R3m
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P represents pressure, V represents the unit cell volume of the
LDP sample, V0 represents the unit cell volume of the LDP
sample at ambient pressure, and K0 represents bulk modulus at
ambient pressure.
Density Functional Theory Calculation. All the

simulations were based on the density functional theory
(DFT) within the Vienna ab initio simulation package
(VASP).40,41 The exchange−correlation functional was de-
scripted by the generalized gradient approximation (GGA),
which was proposed by Perdew, Burke, and Ernzerhof
(PBE),42 and the cutoff energy used for the plane wave basis
set extending was chosen to 520 eV. During the crystal
relaxation, the lattice and atomic positions were fully relaxed
until the residual force on each atom is less than 0.02 eV/Å.
The Monkhorst−Pack grid 5 × 5 × 3 was adopted to integrate
the first Brillouin zone. The crystal phase stability was
determined by using energy difference (ΔEf) between the
LDP-3C and LDP-12R phases, which is defined as following
equation:

E E Ef 12R 3C=

where E3C and E12R are the total energy of Cs4CdBi2Cl12 crystal
structure with LDP-3C and LDP-12R phase, respectively.

■ RESULTS AND DISCUSSION
Crystalline powders of Cs4MIIBi2Cl12 (MII: Cd, Cd0.8Mn0.2, or
Mn) LDP (Trigonal phase, space group: R3m, Scheme 1a)
were synthesized using a reported precipitation method (see
the Supporting Information for details).35,43 At ambient
condition, the stacking sequence of CsCl3 sublattices along
the [001] direction follows an fcc-type order (i.e., ABCABC...,
Scheme 1a), denoted as the LDP-3C phase in this study. The
synchrotron-based in situ wide-angle X-ray scattering (WAXS)
technique was used to characterize the phase transition of LDP
powders under high-pressure treatment using a diamond anvil

cell.21,44−46 Taking the Cs4CdBi2Cl12 powder as an example,
the original LDP-3C phase remained stable up to 1.6 GPa
while all the WAXS peaks shifted to larger q-values (Figure
1a,b Figures S1 and S2, Tables S1−S6), corresponding to a
gradual shrinkage of unit cell volume from 1849 to 1724 Å3. A
phase transition started when the pressure reached 3.3 GPa,
which was indicated by the emergence of a set of new
scattering features located at the q-values of 1.60, 2.15, and
2.35 Å−1 (Figure 1a,c). The phase transition completed at 7.3
GPa as indicated by the total disappearance of the initial (208)
diffraction peak at 2.42 Å−1 (shoulder-like feature in the WAXS
patterns at 3.3 and 4.8 GPa, Figure 1a). We assigned this newly
formed high-pressure phase to an LDP polytypic structure as a
result of the systematic sliding of the Bi−Cd−Bi octahedra
units within the basal plane of the LDP crystal lattice (Scheme
1a,b). Specifically, during the phase transition, each Bi−Cd−Bi
trilayer unit (together with four neighboring CsCl3 layers)
slides one-third of a unit cell along the [110] direction (unit
cell axes are maintained after phase transition). After phase
transition, the stacking sequence of CsCl3 sublattices along the
[001] direction in a LDP unit cell changed from the initial fcc-
type order (i.e., ABCA-BCAB-CABC) to a new polytypic order
(i.e., ABCA-CABC-BCAB) with a 12-layer minimal repeating
unit, thus denoted as the LDP-12R phase (Scheme 1b). While
forming the new polytype of LDP-12R phase, both the
characteristic Bi−Cd−Bi trilayer octahedra connectivity and
the R3m space group of the original LDP structure were
preserved (Scheme 1c). Upon further increasing pressure to
the maximal value of 13.3 GPa, the unit cell volume of the
LDP-12R phase continuously shrank to 1464 Å3 without any
additional phase transitions (Figure 1a).
Interestingly, the LDP-12R phase was maintained with

gradually expanded unit cell volume during the decompression
process and could be fully captured at ambient pressure
(Figure 1b,d). The capture of this high-pressure phase

Figure 1. (a) WAXS patterns of Cs4CdBi2Cl12 LDP at different pressures during the compression and decompression processes. Green and red
lines represent the scattering peaks originated from the original LDP-3C and LDP-12R phases, respectively. (b−d) WAXS patterns of the LDP-3C
phases at 0 GPa (b), the mixed phase at 3.3 GPa (c), and the LDP-12R phase after decompression (d). Simulated standard peak positions are
represented by gray bars. Black, dark blue, and light blue lines represent scattering patterns originated from the original LDP-3C phase, both LDP-
3C and LDP-12R phases, and the LDP-12R phase, respectively. (e) Calculated energy difference between the LDP-12R phase and LDP-3C phase
of Cs4CdBi2Cl12 LDP at different pressures.
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suggested a retainability of the resulting LDP-12R crystal
structure, which was further confirmed by lattice energy
calculations based on density functional theory (DFT). The
calculation results showed that while the LDP-12R phase
exhibited a slightly higher energy (+0.15 eV/unit cell) than the
LDP-3C phase at ambient pressure, it became the energetically
favored structure at elevated pressure (>1 GPa, Figure 1e).
Such a small lattice energy difference (i.e., 0.15 eV/unit cell)
between the two phases, i.e., LDP-3C and LDP-12R phases,
agreed well with our experimental observations that (1) the
phase transition took place at relatively low pressure, and (2)
the high-pressure LDP-12R phase could be captured at
ambient pressure. Both the experimental results and DFT

calculations proved that external pressure processing could be
used as an effective means to tune the phase of LDP materials.
The Cs4CdBi2Cl12 LDP-3C-to-12R phase transition was

further studied through Raman spectroscopy measurements.
The majority of the Raman peaks were assigned to the
vibrational modes of [BiCl6]3−: the peaks at 295 and 249 cm−1

could be assigned to the A1g symmetric stretching and Eg
asymmetric stretching, respectively. The two peaks at 123 and
155 cm−1 were assigned to the scissoring modes of [BiCl6]3−.
Lastly, the peak at 275 cm−1 was assigned to the A1g stretching
mode of [CdCl6]4− octahedra.47−50 All Raman peaks shifted to
larger wavenumbers with increasing pressure, corresponding to
a universal contraction of the chemical bonds. All Raman peaks

Figure 2. (a) Raman spectra of the Cs4CdBi2Cl12 LDP powder at different pressures during the compression and decompression processes. Dashed
lines mark the peak positions for the starting Raman spectrum of the sample at ambient pressure. (b) Raman peak evolutions of the Cs4CdBi2Cl12
powder. [BiCl6]3− related peaks are marked by purple lines and the [CdCl6]4− related peak is marked by the blue line. Solid lines: compression
process. Dashed lines: decompression process. (c, d) Local LDP structures to show the terminal Cl− and bridging Cl− anions in the LDP-3C and
LDP-12R phases.

Figure 3. (a, b) WAXS evolutions of Cs4(Cd0.8Mn0.2)Bi2Cl12 (a) and Cs4MnBi2Cl12 (b) LDP powder samples during the pressure cycle. (c, d)
WAXS patterns of the LDP-3C phase (bottom) and LDP-12R phase (top) of the Cs4(Cd0.8Mn0.2)Bi2Cl12 (c) and Cs4MnBi2Cl12 (d) LDP samples
before compression and after complete decompression. Simulated standard peak positions are represented by gray bars. Black, purple, and pink
lines in (c) represent scattering patterns originated from the original LDP-3C phase, both LDP-3C and LDP-12R phases, and the LDP-12R phase,
respectively. Black, yellow, and orange lines in (d) represent scattering patterns originated from the original LDP-3C phase, both LDP-3C and
LDP-12R phases, and the LDP-12R phase, respectively.
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became broader with increasing pressure until they became
indistinguishable at 12.4 GPa, reflecting an increase in
structural disorder because of the applied pressure (Figure
2a). The T2g scissoring mode of [BiCl6]3− further split at 3.1
GPa, resulting in an additional peak at 155 cm−1 caused by the
distortion of the [BiCl6]3− octahedral at high pressure.51 Upon
complete release of pressure, the A1g mode of [BiCl6]3−

octahedra irreversibly shifted from 296 to 293 cm−1, and
more obviously, the Eg mode shifted from 249 to 240 cm−1

(Figure 2b). The irreversible shifts of the Raman peaks are
attributed to the local structure change of the terminal Cl−

anions in the [BiCl6]3− octahedra (Figure 2c, d). Specifically,
each [BiCl6]3− octahedron is composed of three terminal Cl−

anions and three bridging Cl− anions (Figure S3). The three
terminal ones are located at the top and bottom atomic layers
of the Bi−Cd−Bi trilayer units and bonded to both Cs+ within
their trilayer units and the Cs+ in the adjacent trilayer unit that
slides during the phase transition (Figure 2c,d and Figure S3).
In contrast, the three bridging Cl− anions are embedded inside
each trilayer unit and thus not bonded to any ions in the
adjacent trilayers (Figure 2c,d). During the LDP-3C-to-12R
phase transition, while the local coordination environment of
the bridging Cl− anions was preserved, the terminal Cl− anions
underwent a slide relative to the adjacent CsCl3 layer and thus
one Cs+ cation moved to the position opposite to the Bi3+

cation (Figure 2c,d). Such local structure variation affects the
symmetry as well as Bi−Cl bond strength, thus influencing the
energy and intensity of the vibration modes of the Bi−Cl
bonds, leading to the observed red shifts of the Raman peaks
for the [BiCl6]3− octahedra. In comparison, the [CdCl6]4−

octahedral units contain only the bridging Cl− anions with a
nearly unchanged local coordination environment; thus the
related Raman peak stayed almost unchanged after the high-
pressure cycle (Figure 2a,b). Overall, the discrepancy between
the Bi-related and Cd-related Raman shifts supported the

observed polytypic LDP-3C-to-12R phase transformation
through lateral inter-trilayer sliding as shown in Scheme 1.
The LDP-3C-to-12R phase transition was also observed for

the alloyed Cs4(Cd0.8Mn0.2)Bi2Cl12 and the Cs4MnBi2Cl12 LDP
powder samples (Figure 3, Figures S4−S7, Tables S7−S18).
The transition to LDP-12R phase for Cs4(Cd0.8Mn0.2)Bi2Cl12
and Cs4MnBi2Cl12 LDP samples occurred at the pressure
ranges of 2.6−4.9 and 4.8−6.0 GPa, respectively (Figure 3a,b).
Similar to the Cs4CdBi2Cl12 LDP sample, the high-pressure
LDP-12R phases could be fully captured at ambient condition
for both samples after decompression (Figure 3c,d). Prior
reports showed that the Cs4MnBi2Cl12 LDP single crystal
might go through a phase transition from the hexagonal R3m
phase to a cubic Fd3m phase at ∼2 GPa, followed by a second
transition to the orthorhombic Imma phase at ∼9 GPa.51

However, none of the high-pressure structures was observed in
our experiments, suggesting that the pressure-induced phase
transition pathway was altered depending on the initial form of
the LDP materials. In addition, considerable deviatoric
pressure may also contribute to the retaining of the LDP-
12R phase, as it has proven to show influence on the high-
pressure phase transition and morphology control of nano-
crystalline materials.52,53

The evolution of the lattice constants of the three LDP
powder samples during compression are summarized in Figure
4. For all LDP samples tested here, negligible anisotropies in
the compressibility were observed throughout the process
(Figure 4a−c), in contrast to other inorganic layered
perovskites such as A3Bi2Br9, which commonly show a higher
axial compressibility than the equatorial one.54 The bulk
moduli were extracted to be 28.6, 28.2, and 33.9 GPa for the
Cs4CdBi2Cl12, Cs4(Cd0.8Mn0.2)Bi2Cl12 and Cs4MnBi2Cl12
samples, respectively (Figure 4d−f). These values are notice-
ably lower than that of the CsPbCl3 perovskite powder (i.e.,
45.6 GPa),55 in good accordance with the soft and prone-to-
transformation nature of the LDPs under high pressure.

Figure 4. (a−c) Normalized lattice constant evolutions of Cs4CdBi2Cl12 (a), Cs4(Cd0.8Mn0.2)Bi2Cl12 (b), and Cs4MnBi2Cl12 (c) during the
compression process. The background color represents different phases determined based on the WAXS data analyses. (d−f) Bulk moduli of
Cs4CdBi2Cl12 (d), Cs4(Cd0.8Mn0.2)Bi2Cl12 (e), and Cs4MnBi2Cl12 (f) LDP powders, obtained by the second-order Birch−Murnaghan equation of
state fitting.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.2c07970
J. Phys. Chem. C 2023, 127, 2407−2415

2411

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c07970/suppl_file/jp2c07970_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c07970/suppl_file/jp2c07970_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c07970/suppl_file/jp2c07970_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c07970/suppl_file/jp2c07970_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c07970?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c07970?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c07970?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c07970?fig=fig4&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.2c07970?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Emission property evolutions of the LDP samples under
pressure were monitored by in situ PL spectroscopy. The PL
peak of Cs4MnBi2Cl12 LDP powder red-shifted gradually from
2.06 to 1.76 eV upon compression from ambient pressure to
13.6 GPa (Figure 5a−e). The pressure-induced PL peak
energy decrease is similar to that for other Mn-containing
halide perovskite systems, showing a decreased energy gap
between the 4T1 and 6A1 electronic states of Mn2+ under
pressure as a result of strengthened crystal field splitting.56,57

The PL intensity quickly decreased down to 23% of the initial
value when the pressure only reached 0.6 GPa, followed by a
brief plateau to 2.9 GPa and then a gradual decrease between
2.9 and 6.0 GPa (Figure 5f). Considering that the LDP-3C-to-
12R phase transition takes place between 3.0 and 6.0 GPa, we
assign the initial quick decrease of the PL intensity to the
formation of nonradiative surface and crystalline defects.56 The
following slow PL intensity decrease (2.9−6.0 GPa) can be
explained by the gradual phase transition to the LDP-12R
phase with interlayer sliding. The deviatoric stress may also
contribute to the decreased emission intensity.22 Upon
releasing the pressure, the PL peak energy completely reverted
to 2.06 eV, whereas the PL intensity remained significantly
lower than the initial PL intensity of the sample before press
(Figure 5f, Figure S8). Similar PL evolution under elevated
pressure was observed for the Cs4(Cd0.8Mn0.2)Bi2Cl12 LDP
sample, despite the large difference in their PL quantum yields
(1.2% for Cs4MnBi2Cl12, 46% for Cs4(Cd0.8Mn0.2)Bi2Cl12)

35

which possessed a much weaker Mn−Mn coupling effect than
the Cs4MnBi2Cl12 LDP (Figure S9), suggesting that the
strength of Mn−Mn coupling was not responsible for PL
evolution behavior of the LDP powders under the pressure
processing.35 Interestingly, broad PL peaks centered at 2.44−
2.61 and 2.23−2.35 eV for the Cs4MnBi2Cl12 and
Cs4(Cd0.8Mn0.2)Bi2Cl12 samples, respectively, emerged in
some local areas when the pressure reached 4.9 and 4.2 GPa,

respectively (Figure 5c,g, Figure S9c). We tentatively assign
this green emission to the pressure-induced defect states,
which compete with the Mn2+ ion emission center for the
energy transfer process from the neighboring [BiCl6]3−

frameworks. Considering the green emission emerges in the
pressure range of phase transition, it may originate from the
defects caused by the lateral slide of the Bi−MII−Bi octahedral
trilayer units and the corresponding [BiCl6]3− local environ-
ment change as we have discussed above. Similar broad green
emission features were also observed for the Cs4CdBi2Cl12
LDP sample under pressure (Figure S10), as well as in a
previous report on Cs2AgBiCl6 perovskite under high
pressure,23 suggesting that the origin of the green emission is
from the Birelated motifs rather than Mn-related ones. Further
research is still needed to identify the radiative mechanism of
these observed green emission features.

■ CONCLUSION
In summary, we report a pressure-induced polytypic phase
transition from the initial LDP-3C phase to a new LDP-12R
phase for the Cs4MIIBi2Cl12 LDP (MII: Cd, Cd0.8Mn0.2, or Mn)
powder samples as a result of lateral sliding of the Bi−MII−Bi
octahedral trilayer units. Importantly, this newly transformed
LDP-12R phase can be fully captured at ambient conditions
after complete release of pressure, suggesting a metastability of
the obtained LDP-12R phase. Optically, the samples with an
LDP-12R phase showed decreased PL efficiency and defect-
induced emission at elevated pressure. The retainability of the
high-pressure phase transition provides a novel method of
manipulating crystal structures and thus optoelectronic
properties of lead-free halide perovskite materials by using
facile high-pressure engineering.

Figure 5. (a) Normalized PL spectra of the Cs4MnBi2Cl12 LDP powder at different pressures. (b−e) Optical microscope images of the
Cs4MnBi2Cl12 LDP powder at different pressures under UV excitation. (f) Evolution of the PL peak energy (red squares) and intensity (blue
circles) during the pressure cycle. (g) PL spectra acquired at the green emitting regions. All spectra are normalized based on the Mn PL peak
around 1.8−1.9 eV.
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